home *** CD-ROM | disk | FTP | other *** search
- /* $Id: project.c,v 1.2 1997/01/29 19:05:29 brianp Exp $ */
-
- /*
- * Mesa 3-D graphics library
- * Version: 2.2
- * Copyright (C) 1995-1997 Brian Paul
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the Free
- * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-
- /*
- * $Log: project.c,v $
- * Revision 1.2 1997/01/29 19:05:29 brianp
- * faster invert_matrix() function from Stephane Rehel
- *
- * Revision 1.1 1996/09/27 01:19:39 brianp
- * Initial revision
- *
- */
-
-
- #include <stdio.h>
- #include <string.h>
- #include <math.h>
- #include "gluP.h"
-
-
- /*
- * This code was contributed by Marc Buffat (buffat@mecaflu.ec-lyon.fr).
- * Thanks Marc!!!
- */
-
-
-
- /* implementation de gluProject et gluUnproject */
- /* M. Buffat 17/2/95 */
-
-
-
- /*
- * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in
- * Input: m - the 4x4 matrix
- * in - the 4x1 vector
- * Output: out - the resulting 4x1 vector.
- */
- static void transform_point( GLdouble out[4], const GLdouble m[16],
- const GLdouble in[4] )
- {
- #define M(row,col) m[col*4+row]
- out[0] = M(0,0) * in[0] + M(0,1) * in[1] + M(0,2) * in[2] + M(0,3) * in[3];
- out[1] = M(1,0) * in[0] + M(1,1) * in[1] + M(1,2) * in[2] + M(1,3) * in[3];
- out[2] = M(2,0) * in[0] + M(2,1) * in[1] + M(2,2) * in[2] + M(2,3) * in[3];
- out[3] = M(3,0) * in[0] + M(3,1) * in[1] + M(3,2) * in[2] + M(3,3) * in[3];
- #undef M
- }
-
-
-
-
- /*
- * Perform a 4x4 matrix multiplication (product = a x b).
- * Input: a, b - matrices to multiply
- * Output: product - product of a and b
- */
- static void matmul( GLdouble *product, const GLdouble *a, const GLdouble *b )
- {
- /* This matmul was contributed by Thomas Malik */
- GLdouble temp[16];
- GLint i;
-
- #define A(row,col) a[(col<<2)+row]
- #define B(row,col) b[(col<<2)+row]
- #define T(row,col) temp[(col<<2)+row]
-
- /* i-te Zeile */
- for (i = 0; i < 4; i++)
- {
- T(i, 0) = A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, 3) * B(3, 0);
- T(i, 1) = A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, 3) * B(3, 1);
- T(i, 2) = A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, 3) * B(3, 2);
- T(i, 3) = A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, 3) * B(3, 3);
- }
-
- #undef A
- #undef B
- #undef T
- MEMCPY( product, temp, 16*sizeof(GLdouble) );
- }
-
-
- static GLdouble Identity[16] = {
- 1.0, 0.0, 0.0, 0.0,
- 0.0, 1.0, 0.0, 0.0,
- 0.0, 0.0, 1.0, 0.0,
- 0.0, 0.0, 0.0, 1.0
- };
-
-
-
- /*
- * Compute the inverse of a 4x4 matrix. Contributed by scotter@lafn.org
- */
- static void invert_matrix_general( const GLdouble *m, GLdouble *out )
- {
-
- /* NB. OpenGL Matrices are COLUMN major. */
- #define MAT(m,r,c) (m)[(c)*4+(r)]
-
- /* Here's some shorthand converting standard (row,column) to index. */
- #define m11 MAT(m,0,0)
- #define m12 MAT(m,0,1)
- #define m13 MAT(m,0,2)
- #define m14 MAT(m,0,3)
- #define m21 MAT(m,1,0)
- #define m22 MAT(m,1,1)
- #define m23 MAT(m,1,2)
- #define m24 MAT(m,1,3)
- #define m31 MAT(m,2,0)
- #define m32 MAT(m,2,1)
- #define m33 MAT(m,2,2)
- #define m34 MAT(m,2,3)
- #define m41 MAT(m,3,0)
- #define m42 MAT(m,3,1)
- #define m43 MAT(m,3,2)
- #define m44 MAT(m,3,3)
-
- GLdouble det;
- GLdouble d12, d13, d23, d24, d34, d41;
- GLdouble tmp[16]; /* Allow out == in. */
-
- /* Inverse = adjoint / det. (See linear algebra texts.)*/
-
- /* pre-compute 2x2 dets for last two rows when computing */
- /* cofactors of first two rows. */
- d12 = (m31*m42-m41*m32);
- d13 = (m31*m43-m41*m33);
- d23 = (m32*m43-m42*m33);
- d24 = (m32*m44-m42*m34);
- d34 = (m33*m44-m43*m34);
- d41 = (m34*m41-m44*m31);
-
- tmp[0] = (m22 * d34 - m23 * d24 + m24 * d23);
- tmp[1] = -(m21 * d34 + m23 * d41 + m24 * d13);
- tmp[2] = (m21 * d24 + m22 * d41 + m24 * d12);
- tmp[3] = -(m21 * d23 - m22 * d13 + m23 * d12);
-
- /* Compute determinant as early as possible using these cofactors. */
- det = m11 * tmp[0] + m12 * tmp[1] + m13 * tmp[2] + m14 * tmp[3];
-
- /* Run singularity test. */
- if (det == 0.0) {
- /* printf("invert_matrix: Warning: Singular matrix.\n"); */
- MEMCPY( out, Identity, 16*sizeof(GLdouble) );
- }
- else {
- GLdouble invDet = 1.0 / det;
- /* Compute rest of inverse. */
- tmp[0] *= invDet;
- tmp[1] *= invDet;
- tmp[2] *= invDet;
- tmp[3] *= invDet;
-
- tmp[4] = -(m12 * d34 - m13 * d24 + m14 * d23) * invDet;
- tmp[5] = (m11 * d34 + m13 * d41 + m14 * d13) * invDet;
- tmp[6] = -(m11 * d24 + m12 * d41 + m14 * d12) * invDet;
- tmp[7] = (m11 * d23 - m12 * d13 + m13 * d12) * invDet;
-
- /* Pre-compute 2x2 dets for first two rows when computing */
- /* cofactors of last two rows. */
- d12 = m11*m22-m21*m12;
- d13 = m11*m23-m21*m13;
- d23 = m12*m23-m22*m13;
- d24 = m12*m24-m22*m14;
- d34 = m13*m24-m23*m14;
- d41 = m14*m21-m24*m11;
-
- tmp[8] = (m42 * d34 - m43 * d24 + m44 * d23) * invDet;
- tmp[9] = -(m41 * d34 + m43 * d41 + m44 * d13) * invDet;
- tmp[10] = (m41 * d24 + m42 * d41 + m44 * d12) * invDet;
- tmp[11] = -(m41 * d23 - m42 * d13 + m43 * d12) * invDet;
- tmp[12] = -(m32 * d34 - m33 * d24 + m34 * d23) * invDet;
- tmp[13] = (m31 * d34 + m33 * d41 + m34 * d13) * invDet;
- tmp[14] = -(m31 * d24 + m32 * d41 + m34 * d12) * invDet;
- tmp[15] = (m31 * d23 - m32 * d13 + m33 * d12) * invDet;
-
- MEMCPY(out, tmp, 16*sizeof(GLdouble));
- }
-
- #undef m11
- #undef m12
- #undef m13
- #undef m14
- #undef m21
- #undef m22
- #undef m23
- #undef m24
- #undef m31
- #undef m32
- #undef m33
- #undef m34
- #undef m41
- #undef m42
- #undef m43
- #undef m44
- #undef MAT
- }
-
-
- /*
- * Invert matrix m. This algorithm contributed by Stephane Rehel
- * <rehel@worldnet.fr>
- */
- static void invert_matrix( const GLdouble *m, GLdouble *out )
- {
- /* NB. OpenGL Matrices are COLUMN major. */
- #define MAT(m,r,c) (m)[(c)*4+(r)]
-
- /* Here's some shorthand converting standard (row,column) to index. */
- #define m11 MAT(m,0,0)
- #define m12 MAT(m,0,1)
- #define m13 MAT(m,0,2)
- #define m14 MAT(m,0,3)
- #define m21 MAT(m,1,0)
- #define m22 MAT(m,1,1)
- #define m23 MAT(m,1,2)
- #define m24 MAT(m,1,3)
- #define m31 MAT(m,2,0)
- #define m32 MAT(m,2,1)
- #define m33 MAT(m,2,2)
- #define m34 MAT(m,2,3)
- #define m41 MAT(m,3,0)
- #define m42 MAT(m,3,1)
- #define m43 MAT(m,3,2)
- #define m44 MAT(m,3,3)
-
- register GLdouble det;
- GLdouble tmp[16]; /* Allow out == in. */
-
- if( m41 != 0. || m42 != 0. || m43 != 0. || m44 != 1. ) {
- invert_matrix_general(m, out);
- return;
- }
-
- /* Inverse = adjoint / det. (See linear algebra texts.)*/
-
- tmp[0]= m22 * m33 - m23 * m32;
- tmp[1]= m23 * m31 - m21 * m33;
- tmp[2]= m21 * m32 - m22 * m31;
-
- /* Compute determinant as early as possible using these cofactors. */
- det= m11 * tmp[0] + m12 * tmp[1] + m13 * tmp[2];
-
- /* Run singularity test. */
- if (det == 0.0) {
- /* printf("invert_matrix: Warning: Singular matrix.\n"); */
- MEMCPY( out, Identity, 16*sizeof(GLdouble) );
- }
- else {
- GLdouble d12, d13, d23, d24, d34, d41;
- register GLdouble im11, im12, im13, im14;
-
- det= 1. / det;
-
- /* Compute rest of inverse. */
- tmp[0] *= det;
- tmp[1] *= det;
- tmp[2] *= det;
- tmp[3] = 0.;
-
- im11= m11 * det;
- im12= m12 * det;
- im13= m13 * det;
- im14= m14 * det;
- tmp[4] = im13 * m32 - im12 * m33;
- tmp[5] = im11 * m33 - im13 * m31;
- tmp[6] = im12 * m31 - im11 * m32;
- tmp[7] = 0.;
-
- /* Pre-compute 2x2 dets for first two rows when computing */
- /* cofactors of last two rows. */
- d12 = im11*m22 - m21*im12;
- d13 = im11*m23 - m21*im13;
- d23 = im12*m23 - m22*im13;
- d24 = im12*m24 - m22*im14;
- d34 = im13*m24 - m23*im14;
- d41 = im14*m21 - m24*im11;
-
- tmp[8] = d23;
- tmp[9] = -d13;
- tmp[10] = d12;
- tmp[11] = 0.;
-
- tmp[12] = -(m32 * d34 - m33 * d24 + m34 * d23);
- tmp[13] = (m31 * d34 + m33 * d41 + m34 * d13);
- tmp[14] = -(m31 * d24 + m32 * d41 + m34 * d12);
- tmp[15] = 1.;
-
- MEMCPY(out, tmp, 16*sizeof(GLdouble));
- }
-
- #undef m11
- #undef m12
- #undef m13
- #undef m14
- #undef m21
- #undef m22
- #undef m23
- #undef m24
- #undef m31
- #undef m32
- #undef m33
- #undef m34
- #undef m41
- #undef m42
- #undef m43
- #undef m44
- #undef MAT
- }
-
-
-
- /* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */
- GLint gluProject(GLdouble objx,GLdouble objy,GLdouble objz,
- const GLdouble model[16],const GLdouble proj[16],
- const GLint viewport[4],
- GLdouble *winx,GLdouble *winy,GLdouble *winz)
- {
- /* matrice de transformation */
- GLdouble in[4],out[4];
-
- /* initilise la matrice et le vecteur a transformer */
- in[0]=objx; in[1]=objy; in[2]=objz; in[3]=1.0;
- transform_point(out,model,in);
- transform_point(in,proj,out);
-
- /* d'ou le resultat normalise entre -1 et 1*/
- in[0]/=in[3];in[1]/=in[3];in[2]/=in[3];
-
- /* en coordonnees ecran */
- *winx = viewport[0]+(1+in[0])*viewport[2]/2;
- *winy = viewport[1]+(1+in[1])*viewport[3]/2;
- /* entre 0 et 1 suivant z */
- *winz = (1+in[2])/2;
- return GL_TRUE;
- }
-
-
-
- /* transformation du point ecran (winx,winy,winz) en point objet */
- GLint gluUnProject(GLdouble winx,GLdouble winy,GLdouble winz,
- const GLdouble model[16],const GLdouble proj[16],
- const GLint viewport[4],
- GLdouble *objx,GLdouble *objy,GLdouble *objz)
- {
- /* matrice de transformation */
- GLdouble m[16], A[16];
- GLdouble in[4],out[4];
-
- /* transformation coordonnees normalisees entre -1 et 1 */
- in[0]=(winx-viewport[0])*2/viewport[2] - 1.0;
- in[1]=(winy-viewport[1])*2/viewport[3] - 1.0;
- in[2]=2*winz - 1.0;
- in[3]=1.0;
-
- /* calcul transformation inverse */
- matmul(A,proj,model);
- invert_matrix(A,m);
-
- /* d'ou les coordonnees objets */
- transform_point(out,m,in);
- *objx=out[0]/out[3];
- *objy=out[1]/out[3];
- *objz=out[2]/out[3];
- return GL_TRUE;
- }
-
-